

FLOPPY BABY? It could be XLMTM Differential Diagnosis for Neuromuscular Disorders, *Neonatal Onset*

Neuromuscular Disorder	Description	Clinical Findings	Muscle Fiber Status	Diagnosis*
X-linked myotubular myopathy (XLMTM) X-linked recessive	A monogenic disorder caused by mutations in the <i>MTM1</i> gene encoding myotubularin, a protein required for muscle development, cellular organization, and function ¹	Characterized by profound hypotonia and respiratory insufficiency at birth ³ . Frequently accompanied by ^{3A} : • Facial weakness (myopathic face) • Long fingers and toes (myopathic face) • Dolichocephaly • Bulbar weakness • Bulbar weakness knees	Central nuclei. Muscle fiber atrophy and necrosis usually absent ⁵	Genetic testing to confirm mutations in the <i>MTM1</i> gene ³ Historically muscle biopsy has been used in the differential diagnosis of
inheritance	Onset typically at birth but atypical patients can present in childhood and later ²	Ophthalmoparesis, often Areflexia associated with ptosis		XLMTM. ⁴⁻⁶
Spinal muscular atrophy, Type 1 (SMA Type 1)	A monogenic disorder caused by biallelic mutations in <i>SMN1</i> gene encoding SMN protein, which is essential for motor neuron survival and function ⁶ Loss of SMN leads to motor neuron loss in the spinal cord and brain stem, impairing muscle control ⁶	Characterized by progressive muscle weakness , lack/ regression of motor development and poor muscle tone before 6 months of age ⁷ . Frequently accompanied by: • Expressive face • Respiratory insufficiency	Muscle fiber atrophy and muscle wasting due to motor neuron degeneration and loss ⁷	Genetic testing to confirm mutations in the SMN7 gene, as well as newborn screening programs ^{6,7}
Autosomal recessive inheritance	Onset typically before 6 months of age ⁶	Bulbar weakness		
Myotonic dystrophy, Type 1 (DM1)	A monogenic disorder caused by trinucleotide repeat expansion in the <i>DMPK</i> gene, leading to build-up of toxic <i>DMPK</i> RNA which interferes with proper activity of various proteins important for muscle function ⁸	In neonates, characterized by some combination of ^{8.9} : Hypotonia Ceneralized weakness affecting Respiratory insufficiency Skeletal, smooth muscle, eye, Difficulty feeding 	Central nuclei. Muscle fiber atrophy (particularly of Type 1 fibers), no necrosis ¹⁰	Genetic testing to detect CTG repeat expansion within DMPk gene; number of repeats correlates with severity and age of onset ⁹
Autosomal dominant inheritance	Typically later onset , but may also present in infancy (later onset details on back page) ⁸	Facial weakness Positional malformations including club foot		>1000 repeats - Congenital ; neonatal or early childhood onset
Prader-Willi syndrome (PWS)	A genomic imprinting disorder (caused by inheriting both chromosome copies from same parent, not by mutation) caused by loss of expression of multiple genes in chromosome 15 ¹¹	Characterized by profound hypotonia and bulbar weakness in early infancy ⁿ . Followed in later infancy/early childhood by: • Delayed motor milestones & • Almond-shaped eyes language development • Excessive eating • Some degree of cognitive • Hypogonadism which manifests	Normal ⁿ	DNA methylation testing to detect abnormal parent- specific imprinting within the disease-causing region of
Spontaneous; very rarely inherited	Neonatal onset ¹²	Areflexia Areflexia		chromosome 15 (the PWCR region) ¹¹

*This resource is intended for qualified healthcare providers for their information only. It should not replace professional judgment or clinical experience. This informational resource is not a substitute for medical examination and it does not constitute medical advice. It is always the healthcare provider's responsibility to determine the best course of treatment for their patients.

Differential Diagnosis for Neuromuscular Disorders, Childhood or Adult Onset

Neuromuscular Disorder	Description	Clinical Findings	Muscle Fiber Status	Diagnosis*	
Duchenne muscular dystrophy (DMD)	A monogenic disorder caused by mutations in <i>DMD</i> gene encoding dystrophin protein, leading to dysfunction, degeneration, and necrosis of muscle fibers ¹³	Characterized by progressive muscle weakness (both skeletal and cardiac) in childhood , not infancy ¹⁴ . Frequently accompanied by: • Delayed motor milestones	Degenerating and necrotic muscle fibers increasingly replaced by fibrosis	Elevated creatine kinase (CK) concentration in serum Genetic testing to confirm mutation in <i>DMD</i> gene ¹⁴	
X-linked recessive inheritance	Onset typically in childhood , primarily affects males, but female carriers may show symptoms ¹⁴	Delayed motor milestones Difficulties in language Cardiac issues	and fatty tissue accumulation as the disease progresses ¹⁴		
Myotonic dystrophy, Type 1, (DM1) (later onset)	A monogenic disorder caused by trinucleotide repeat expansion in the <i>DMPK</i> gene, leading to build-up of toxic DMPK RNA that interferes with proper activity of various proteins important for muscle function ⁸	In adults, characterized by ⁹ : Classic: • Muscle weakness (mostly distal in extremity muscles) • Cardiac issues • Posterior subcapsular cataracts	Central nuclei. Muscle fiber atrophy (particularly of Type 1 fibers), no necrosis ¹⁰	Genetic testing to detect CTG repeat expansion within <i>DMPK</i> gene; number of repeats correlates with severity and age of onset ⁹ ~100 - 1000 repeats - Classic , early adulthood onset 50 - ~150 repeats - Mild , adult onset	
Autosomal dominant inheritance	Onset typically as teenagers ⁸	Mild: • Mild myotonia & cataract Note: Neonatal signs and symptoms on front page			
Congenital myasthenia syndrome (CMS) Typically autosomal	Monogenic disorder caused by mutations in various genes; all mutations lead to dysfunction of the neuromuscular junction ¹⁵	Characterized by muscle weakness, worsened upon exertion/ fatigable weakness ¹⁵ . In some patients, accompanied by: • Facial weakness • Hypernasal or slurred • Bulbar weakness • Speech	Normal ¹⁵	Decremental EMC response of the compound muscle action potential on low frequency stimulation ¹⁵ In most cases but not always, positive response to acetylcholinesterase (AchE) inhibitors ¹⁵ Absence of anti-acetylcholine receptor (AChR) and anti- muscle-specific receptor receptor tyrosine kinase (MuSK) antibodies in serum ¹⁵	
recessive	Onset typically within first 2 years of life , but can present at any age ¹⁵	Ptosis		Lack of improvement after immunosuppressive therapy ¹⁵ Multi-gene panel testing to identify disease-causing mutation ¹⁵	

*This resource is intended for qualified healthcare providers for their information only. It should not replace professional judgment or clinical experience. This informational resource is not a substitute for medical examination and it does not constitute medical advice. It is always the healthcare provider's responsibility to determine the best course of treatment for their patients.

References: 1. McEntagart M, et al. Neuromuscul Disord. 2002;12(10):939-946. **2**. Biancalana V, et al. Acta Neuropathol. 2017;134(6):889-904. **3**. Dowling JJ, et al. X-Linked Myotubular Myopathy. 2002 [Updated 2018]. In: Adam MP, et al., eds. *GeneReviews* [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1432/**4**. North KN, et al. *Neuromuscul Disord*. 2014;24(2):97-116. **5**. Lawlor MW, et al. *J Neuropathol Exp Neurol*. 2016;75(2):102-110. **6**. Arnold WD, et al. *Muscle Nerve* 2015;51(2):157-167. **7**. Darras BT, et al., Chapter 8 – Spinal Muscular Atrophies. In: Darras BT, et al., eds. *Neuromuscular Disorders of Infancy, Childhood, and Adolescence* (Second Edition). San Diego: Academic Press: 2015. pp. 117-45. **8**. Moxley RT, et al. Chapter 37 – Myotonic Dystrophy. In: Darras BT, et al., eds. *GeneReviews* [Internet]. Seattle (WA): University of Washington, Seattle: 1993-2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1165/ **10**. Thornton CA. *Neurol Clin.* 2014;32(3):705-719. **11**. Driscoll DJ, et al. Prader-Willi Syndrome. 1998 [Updated 2017]. In: Adam MP, et al., eds. *GeneReviews* [Internet]. Seattle (WA): University of Washington, Seattle: 1993-2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1330/ **12**. Bar C, et al. *Orphanet J Rare Dis.* 2017;12(1):18. **13**. Cuan X, et al. *Methods.* 2016;99:19-98. **14**. https://www.ncbi.nlm.nih.gov/books/NBK1165/ **10**. In: Adam MP, et al., eds. *GeneReviews* [Internet]. Seattle (WA): University of Washington, Seattle: 1993-2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1330/ **12**. Bar C, et al. *Orphanet J Rare Dis.* 2017;12(1):118. **13**. Cuan X, et al. *Methods.* 2016;99:19-98. **14**. https://www.ncbi.nlm.nih.gov/books/NBK1165/ **0**. Thornton CA. *Neurol Clin.* 2014;32(3):705-719. **11**. Driscoll DJ, et al. *Orphanet J Rare Dis.* 2017;12(1):118. **13**. Cuan X, et al. *Methods.* 2016;99:19-98. **14**. https://www.ncbi.nlm.nih.gov/books/NBK1165/ **10**. Thornton CA

